MAX materials and MXene materials are new two-dimensional materials which have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in numerous fields. This is an in depth introduction to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively called “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is really a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A means the main-group elements, and X refers to the aspects of C and N. The MXene material is actually a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials get them to have a wide range of applications in structural materials. For example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials likewise have better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be used in energy materials. For instance, K4(MP4)(P4) is one in the MAX materials with higher ionic conductivity and electrochemical activity, which can be used as a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials really are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The surface of MXene materials can communicate with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching treatment of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials really are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials could also be used as catalysts in fuel cells to improve the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. For instance, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For instance, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, using the continuous progress of science and technology as well as the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. These aspects can become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and methods can be further explored to realize a much more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for more optimization. Later on, the composition, structure, surface treatment and other aspects of the fabric may be studied and improved in depth to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be popular in lots of fields, but you can still find many potential application areas to get explored. In the future, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in numerous fields. With the continuous progress of technology and science and also the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.